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Thermoconvective instability of paramagnetic fluids in a nonuniform magnetic field
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The effect of a static, nonuniform magnetic field on a laterally unbounded nonconducting paramagnetic fluid
layer heated from below or above is studied using a linear stability analysis of the Navier-Stokes equations
supplemented by Maxwell’s equations and the appropriate magnetic body force. Buoyancy-driven convection
can be controlled by subjecting the layer to a nonuniform magnetic field. Theoretical predictions agree with
experimental observations.@S1063-651X~98!12505-9#

PACS number~s!: 47.20.Bp, 47.27.Te, 47.62.1q
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I. INTRODUCTION

Recent experiments@1,2# show that a strong inhomoge
neous static magnetic field can induce magnetothermal
vection and can enhance or suppress buoyancy-driven
vection in electrically nonconducting paramagnetic fluid
depending on the relative orientation of the field and te
perature gradients. In these experiments, a paramagneti
lution of gadolinium nitrate is placed in a cylindrical ce
closed with two horizontal plates that are maintained at
ferent temperatures. The cell is placed in a nonuniform m
netic field produced by a superconducting electric coil
pable of providing a maximum field-field gradient produ
uB]B/]zu5250 T2/m, whereB is the magnitude of the mag
netic induction andz the vertical coordinate. The nonuniform
field exerts a magnetic body force on this electrically no
conducting solution. These experiments observe the foll
ing phenomena:~a! when the cell is heated from above~tem-
perature differenceDT,0! and the magnetic force i
upward, the measured Nusselt number remains unity
uB]B/]zu<5 T2/m for uDTu up to 32 °C, indicating no con
vection. However, whenuB]B/]zu56 T2/m, the Nusselt
number begins to increase foruDTu.2 °C, indicating the
onset of magnetothermal convection. For givenDT, the
larger the productuB]B/]zu, the larger the Nusselt numbe
indicating enhanced convection;~b! when the cell is heated
from below and the magnetic force is downward, the Nus
number increases with increasinguB]B/]zu for given DT,
indicating the enhancement of the buoyancy-driven conv
tion; and ~c! when the cell is heated from below and th
magnetic force is upward, for givenDT, the Nusselt numbe
decreases with increasinguB]B/]zu for uB]B/]zu<5 T2/m,
indicating the partial suppression of the convection. Wh
uB]B/]zu56 T2/m, the Nusselt number remains unity fo
DT up to 5 °C, indicating that the convection is complete
suppressed forDT<5 °C. When B]B/]z515 T2/m, the
Nusselt number remains unity forDT up to 30 °C. These
experiments reveal that convection in paramagnetic flu
can be controlled by external inhomogeneous magn
fields.

When a pure fluid is placed in a static magnetic fieldH,
Landau and Lifshitz@3# calculate the volume forces on th
571063-651X/98/57~5!/5564~8!/$15.00
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fluid @Eq. ~34.3! in Ref. @3# converted to SI units#,

f52“p01
1

2
“FH2rS ]m

]r D
T
G2

H2

2
“m1m j3H, ~1!

where p0 is the pressure in the absence of the field,r the
density of the fluid,T the temperature,m the magnetic per-
meability of the fluid, andj the electric current density in th
fluid. In this paper, we limit our consideration to electrical
insulating fluids, i.e.,j50 and, accordingly, the last term
vanishes. We also limit our consideration to paramagn
pure fluids, e.g., oxygen, and assume that the dissipa
forces that occur in colloidal ferrofluids@4# are negligible. As
m5m0(11x), M5xH, and“3H50, we can rewrite Eq.
~1! as

f52“p1m0M•“H, ~2!

where p5p01m0H2@](xv)/]v#T/2 is the modified pres-
sure,m0 the permeability of free space,v51/r the specific
volume,x the volumetric susceptibility of the fluid, andM
the magnetization~the magnetic moment per unit volume!.
The modified pressure gradient term in Eq.~2! does not in-
duce convection because it is irrotational. The last term
Eq. ~2! is the Kelvin body force@5# fm5m0(M•“)H, which
arises from the interaction between the local magnetic fi
H within the fluid and the molecular magnetic momen
This force tends to move paramagnetic fluids toward regi
of higher magnetic field. For typical paramagnetic fluids, t
magnetic susceptibility satisfies Curie’s law@6# x5Cr /T,
where C is a constant characteristic of the fluid. When
horizontal paramagnetic fluid layer heated from below
above is placed in a uniform oblique magnetic field, the i
posed vertical thermal gradient induces a vertical gradien
the magnetic susceptibility, yielding a spatially nonunifor
Kelvin body force. This thermal gradient induced magne
body force tends to destabilize the layer. Our previous st
@7# shows that longitudinal rolls with axes parallel to th
horizontal component of the field are the rolls most unsta
to convection. The corresponding critical Rayleigh numb
and critical wavelength for the onset of such rolls are le
than the well-known Rayleigh-Be´nard values in the absenc
5564 © 1998 The American Physical Society
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57 5565THERMOCONVECTIVE INSTABILITY OF . . .
of magnetic fields. Vertical fields maximize these deviatio
which vanish for horizontal fields. Horizontal fields increa
the critical Rayleigh number and the critical wavelength
all rolls except longitudinal rolls. We emphasize that the
Kelvin force effects differ from the always-stabilizing effec
of the j3B force on a layer of electrically conducting flui
@8#.

The goal of this paper is to develop a theory of magne
thermal convection for nonconducting paramagnetic fluids
a realistic nonuniform magnetic field. We consider a ho
zontal paramagnetic fluid layer heated from above or be
in the presence of an inhomogeneous magnetic field. In
dition to the thermal gradient induced magnetic body fo
described above, the imposed field gradient directly yield
Kelvin body force on the fluid. The imposed thermal gra
ent renders the curl of this force nonzero through
temperature-dependent magnetic susceptibility. It is this
tational body force that is responsible for the phenom
observed in the experiments mentioned above. This force
be utilized to balance the gravitational body force within t
fluid layer, and to enhance or to suppress the buoyan
driven convection. It can also be utilized to promote conv
tion when the layer is heated from above, where gravity s
bilizes the layer.

In this paper, a linear stability analysis of a horizon
layer of pure paramagnetic fluid heated from below or ab
in the presence of a nonuniform magnetic field shows t
oscillatory instability cannot occur and that convection
this layer can be controlled by the nonuniform field. In S
II, we outline the basic equations and boundary conditio
and present the static state solution. In Sec. III, we sum
rize the governing equations for the convective flow. In S
IV, we study the linear stability analysis of the layer in th
presence of an inhomogeneous magnetic field, and ou
the numerical method used to solve the marginal equati
We summarize the main results and draw conclusions in S
V.

II. EQUATIONS OF MOTION

For an incompressible, pure, paramagnetic fluid in
presence of a static, nonuniform magnetic field, the Nav
Stokes equation subject to Eq.~2! takes the form

r
dV

dt
5rg2“p1rn¹2V1m0~M•“ !H, ~3!

wheret is time, V the fluid velocity,d/dt5]/]t1V•“ the
material derivative,g the acceleration of gravity, andn the
kinematic viscosity. We assume the viscosity is isotropic a
independent of the magnetic field.

Conservation of energy yields the temperature equa
for an incompressible paramagnetic fluid@7#

rcp,H

dT

dt
2m0M•

dH

dt
5k¹2T1F, ~4!

wherecp ,H is the specific heat capacity at constant press
and magnetic field,k the thermal conductivity~assumed con-
stant!, andF the viscous dissipation.
,
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For an incompressible fluid, the equation of continu
reduces to

“•V50. ~5!

For an electrically nonconducting fluid, we write th
Maxwell’s equations

“•B50, ~6a!

“3H50, ~6b!

whereB[m0(M1H) is the magnetic induction.
The density equation of state is linearized about an av

age temperatureTa

r5ra@12a~T2Ta!#, ~7!

wherea is the thermal expansion coefficient. We also e
ploy the Boussinesq approximation by allowing the dens
to change only in the large gravitational body force term.

In this paper, the coordinate system of the horizontal la
is defined byuzu<d/2 with ẑ up. We consider the fluid laye
placed in an external nonuniform magnetic field with a co
stant field gradient,

Hext5H01~x•“ !Hext, or Hi
ext5H0i1H1i j xj

~ i , j 5x,y,z!, ~8!

whereH1i j []Hi
ext/]xj are assumed constants,aibi[( iaibi

5axbx1ayby1azbz , and x5xx̂1yŷ1zẑ is the position
vector. The vectorH0 is the magnetic field at the origin (x
50). Equations~6a! and~6b! require that the tensor“Hext is
symmetric and traceless. This assumed field may be tho
of as the leading terms in a Taylor series expansion of a m
general field. In any event, it provides a good approximat
of the applied magnetic field in the region of the convecti
cell in the experiments reported in@1,2#.

The magnetic equation of state is linearized about
temperatureTa and an average magnetic field,Ha5Haxx̂
1Hayŷ1Hazẑ, to become

Mi~Hi ,T!5Mai1xa~Hi2Hai!2
xaHai

Ta
~T2Ta!

~ i 5x,y,z!, ~9!

wherexa5Cra /Ta andMai5xaHai .
Equations~6a! and ~6b! require that the normal compo

nent of magnetic induction and the tangential componen
magnetic field are continuous across the top and bot
boundaries,

@ ẑ•B#2
150 and @ ẑ3H#2

150 at z56d/2.
~10a!

Here, @q#2
15 lime→0(quz56d/21e2quz56d/22e) is the differ-

ence between the values of a quantityq above and below the
boundaries. Rigid boundary conditions require a vanish
velocity
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5566 57JIE HUANG, DONALD D. GRAY, AND BOYD F. EDWARDS
V50 at z56d/2, ~10b!

and the temperature is assumed constant on each boun

T5 HT0

T1

at z5d/2
at z52d/2. ~10c!

To find the pure thermal conduction state, we write

Vs50 and Ts5Ta2bz. ~11!

The boundary conditions on the temperature Eq.~10c! re-
quire Ta5(T01T1)/2, the average temperature of the lay
andb5(T12T0)/d5DT/d, the temperature gradient. No
thatDT.0 when the layer is heated from below. To find t
static state for the magnetic field, we write

Hsi5Hai1g i j xj ~ i , j 5x,y,z!, ~12!

whereg i j is an undetermined tensor. The boundary con
tions on the field and induction Eq.~10a! require

Ha5H0 , and g i j 5H1i j 2
xaH0zb

Ta
d izd jz ~ i , j 5x,y,z!,

~13!

whered i j is the delta function~d i j 51 for i 5 j , andd i j 50
for iÞ j !. In obtaining these results, we have used the f
that the typical value of magnetic susceptibility for parama
netic fluids isx,1023. BecauseH1i j and d izd jz are sym-
metric, so is the tensorg i j .

III. EQUATIONS FOR CONVECTIVE STATES

To derive the governing equations for convective sta
we add perturbations to the static state and substitute
perturbed state into Eqs.~3!–~6! to yield the equations gov
erning these perturbations. To write these equations in
mensionless form, we choosed, d2/DT , DT, and Hd
[xaDTH0 /(11xa)Ta as the scales for length, time, tem
perature, and magnetic field, respectively. Here,DT
[k/r0cp,H is the thermal diffusivity. Finally, we write the
dimensionless governing equations for the convective sta

1

Pr S ]v

]t
1v•“vD52“p81Ru ẑ1K~sin2f!u ẑ

2Rmu1K~z2u!Ĥ0•“h1¹2v,

~14!

S ]u

]t
1v•“u2 ẑ•vD
2L1Ĥ08•F]h

]t
1v•“~h1Hext/Hd!2L2ẑ•vG5¹2u1F8,

~15!

“•h2Ĥ0•“u50, ~16!
ry

,

i-

t
-

s,
is

i-

s,

“•v50. ~17!

In these equations, the variablesv, u, and h represent the
dimensionless perturbations. Here,p8 is a reduced pressur
including magnetic contributions,Ĥ05H0 /H0 is the unit
vector in the direction ofH0 , Ĥ08[Hext/H0 , f the angle
betweenH0 and the horizontal, andF8 the dimensionless
viscous dissipation.

Equation~14! involves four dimensionless parameters: t
Prandtl number Pr, the Rayleigh numberR, the Kelvin num-
ber K, and the vector control parameterRm :

Pr5
n

DT
, R5

agd3DT

nDT
, K5

m0xa
2DT2d2H0

2

~11xa!raTa
2nDT

,

~18a!

Rm5
m0xad3DT

raTanDT
H0•“Hext. ~18b!

The two dimensionless parameters in Eq.~15! are L1

5m0xa
2H0

2/(11xa)Taracp,H , and L25(11xa)sinf<(1
1xa). Here, we use the values ofra and cp,H for water to
estimate the typical value for the geometry-independent
rameterL1 . A typical value for the magnetic susceptibilit
of paramagnetic fluids isxa;1023. For a magnetic induc-
tion B0510 T, we haveL1;1027!1 at room temperature
We also haveL1;1024 for gaseous oxygen at room tem
perature. Accordingly, the term involvingL1 in Eq. ~15! will
be neglected.

In the presence of a uniform oblique magnetic field~K
Þ0, but Rm50!, our linear stability analysis@7# shows that
longitudinal rolls with axes parallel to the horizontal comp
nent of the field are the rolls most unstable to convecti
reflecting the broken rotational symmetry of the layer ab
the vertical due to the presence of the nonzero horizo
component of the field.

In the presence of an inhomogeneous magnetic field~K
Þ0 andRmÞ0!, the vector parameterRm in Eq. ~14! mea-
sures the strength of the magnetic body force due to
applied field gradient. The combination of the vertical co
ponent ofRm with R in Eq. ~14! shows that the gravitationa
effect on the convective flow can be balanced by this co
ponent ofRm . Therefore, convection in nonconducting par
magnetic fluids can be controlled by an inhomogene
magnetic field.

IV. LINEAR STABILITY ANALYSIS

To investigate the magnetothermal convective instabil
we assume that the amplitudes ofv, u, andh are infinitesimal
so that all cross terms in Eqs.~14! and~15! can be neglected
In this paper, we consider the nonuniform magnetic fie
Hext5H0ẑ2H1xx̂2H1yŷ12H1zẑ, where the two param-
etersH0 andH1 are constants.~The superconducting electri
coil used in the experiments@1,2# produces this field in the
central area near the ends of the coil.! This field yields the
vector parameterRm5Rmẑ, where

Rm5
m0xad3DT

raTanDT
S H

]H

]z D
x50

ext

. ~19!
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57 5567THERMOCONVECTIVE INSTABILITY OF . . .
Taking thez component of the curl of the linearized Eq.~14!
yields

1

Pr

]z

]t
5¹2z, ~20!

wherez[ ẑ•(“3v) is thez component of the vorticity. Tak-
ing thez component of the curl curl of Eq.~14!, we have

1

Pr

]

]t
¹2w5¹4w1~R2Rm1K !¹'

2 u2K¹'
2 ]c

]z
, ~21!

wherew is the z component of velocityv and ¹'
2 []2/]x2

1]2/]y2. Equations~15! and ~16! yield

]u

]t
5¹2u1w, ~22!

¹2c2
]u

]z
50. ~23!

Equations~20!, ~21!, ~22!, and~23! govern the linearized
convective flow. The unboundedness in the horizontal dir
tion allows the perturbation wavelength to be chosen fre
in this direction, whence

z5z~z!exp~ iqxx1 iqyy1st !,

w5w~z!exp~ iqxx1 iqyy1st !,

u5u~z!exp~ iqxx1 iqyy1st !, ~24!

c5c~z!exp~ iqxx1 iqyy1st !,

C5C~z!exp~ iqxx1 iqyy1st !,

where qx is the x component of the dimensionless wa
number,q5qxx̂1qyŷ, of these perturbations,qy its y com-
ponent, ands the growth rate. Here,C represents the per
turbations of the magnetic field outside the fluid layer
duced by the convective motion of the fluid and satisfi
Laplace’s equation¹2C50. These perturbations shou
vanish far away from the layer. Substituting Eq.~24! into the
Laplace’s equation yieldsC(z)5C1 exp(2qz) for z.1/2
andC(z)5C2 exp(qz) for z,1/2, whereC1 andC2 are
two undetermined constants andq5Aqx

21qy
2 is the magni-

tude of the wave numberq.
Equations~10a!, ~10b!, and~10c! yield the dimensionless

boundary conditions

z5w5dw/dz5u50 at z561/2, ~25a!

~11xa!
dc

dz
5 H 2qc,

qc,
z51/2
z521/2. ~25b!

The general solution of Eq.~20! subject to Eqs.~25a!
shows that any perturbation in the vertical component of
vorticity must decay in time. Thus, we setz50 in the insta-
bility analysis without loss of generality.
c-
ly

-
s

e

To study the oscillatory instability of these perturbation
we substitute Eq.~24! into Eqs.~21!, ~22!, and~23! to yield
a set of ordinary differential equations, which can be solv
by the Galerkin method. We expandw according to

w~z!5(
m

AmFm~z!, ~26!

where the functionsFm are a complete set of orthonorm
solutions of

d4Fm

dz4 5lm
4 Fm ~27!

satisfying Fm(z)5dFm /dz50 at z561/2. The functions
Fm are divided into two classes: even functionsCm and odd
functionsSm defined by

Cm~z!5
cosh~lmz!

cosh~lm/2!
2

cos~lmz!

cos~lm/2!

and

Sm~z!5
sinh~mmz!

sinh~mm/2!
2

sin~mmz!

sin~mm/2!
.

These functions and their numerical eigenvalueslm andmm
have been tabulated@8#. We also expandu andc in a series
of Fm(z). A one-term approximation yields

A1s21A2s1A350, ~28!

where

A15~q21C11!/Pr,

A25l1
412C11q

21q41A1~q21C11!,

A35PrA1~l1
412C11q

21q4!2~R2Rm1K !q2

1Kq2G11/~S111q2!.

Here,

l154.730 040 74,

C11[2^C1uC19&52*21/2
1/2 C1~z!@d2C1~z!/dz2#dz

512.302 616 19,

G11[^C1uS18&53.342 015 57,

and

S11[2^S1uS19&546.050 122 36.

The onset of neutral oscillatory instability requires an ima
nary growth rates5 iv. Since the functionsA1 , A2 , andA3
are all real, Eq.~28! can be satisfied fors5 iv only if A2
50. SinceA2.0 for all values ofq, an oscillatory instabil-
ity cannot occur in the one-term approximation. By settings
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50, K50, andRm50, Eq. ~28! yields an approximate mar
ginal stateR0(q) in the absence of magnetic fields, whic
has a minimum valueR0c51887 located atq0c53.21. A
numerical calculation involving 360 terms yieldsR0c
51708 andq0c53.12, which agree with the well-know
critical valuesR0c51707.762 andq0c53.117 for the onset
of convection@8#. In the absence of magnetic fields, the cri
cal Rayleigh numberR0c for the rigid boundary conditions is
larger than the critical Rayleigh numberRc527p4/4 for the
free boundary conditions@8#, indicating that the rigid bound
ary conditions tend to stabilize the layer compared with
free boundary conditions. Since our one-term analysis of
stabilities of Eqs.~21!, ~22!, and~23! for the rigid boundary
conditions is qualitatively equivalent to the analysis of ins
bilities of these equations for the free boundary conditions
which C1(z) is replaced by cos(pz), we conclude that an
oscillatory instability cannot occur in this system. Thus w
limit our consideration to a stationary instability.

For the marginal state, the perturbations neither grow
decay with time. Setting]/]t50 in Eqs.~21!, ~22!, and~23!
yields the governing equations for this state. We adopt
algorithm of Stiles and Kagan@9# to solve these equation
numerically. Comparing with the previous algorithm of e
panding all variablesw, u, and c in series ofFm(z), this
algorithm yields more rapid convergence for successive
proximations. First, we still expandw according to Eq.~26!.
We then write

u5(
m

Amum and c5(
m

Amcm . ~29!

We substitute Eqs.~24!, ~26!, and ~29! into Eqs. ~22! and
~23!, and then solve these equations individually to obt
the general solutions forum andcm . We use the boundary
conditions, Eqs.~25!, to determine the coefficients involve
in these general solutions. Finally, we have

um52gmcoshqz2~D21q2!Cm~z!/lm
2 ,

cm5umsinh qz1gmz coshqz

2~lm
112q2D2!DCm~z!/~lm

2!2 for Fm5Cm ,

~30a!

and

um52dmsinh qz2~D21q2!Sm~z!/mm
2 ,

cm5vmcoshqz1dmz sinh qz

2~mm
112q2D2!DSm~z!/~mm

2!2 for Fm5Sm ,

~30b!

where

um5
lm

2

q exp~q/2!~lm
2!2 S lm

112q414q3lmtanh
lm

2 D2
gm

2
,

e
-

-
n

r

e

p-

n

vm5
mm

2

q exp~q/2!~mm
2!2

Smm
112q414q3mmcoth

mm

2 D2
dm

2
,

lm
1[lm

4 1q4, lm
2[lm

4 2q4, mm
1[mm

4 1q4, mm
2[mm

4 2q4,
gm[lm

2 /lm
2cosh(q/2), dm[mm

2 /mm
2 sinh(q/2), and D

[d/dz. In obtaining these results, we made use of the f
that xa!1 for paramagnetic fluids.

Substituting the general solutions Eq.~30a! into Eq. ~21!,
multiplying by Cn(z), and integrating over@21/2,1/2# yield

(
m

Ambmn50, n51,2,3, . . . ~31a!

with

bmn5S lm
11

q4Rr

lm
2 2

q4lm
1K

~lm
2!2 D dmn

2S 22
Rr

lm
2 1

2q4K

~lm
2!2Dq2^CnuD2Cm&

1
q2lm

2 K

exp~q/2!~lm
2!2 S lm

112q414lmq3 tanh
lm

2 D
3^Cnucoshqz&2F2Rr1

1

2
~21q!K G

3q2gm^Cnucoshqz&1q3gmK^Cnuz sinh qz&,

~32a!

whereRr[R2Rm . Similarly, substituting the general solu
tions Eq.~30b! into Eq. ~21!, multiplying by Sn(z), and in-
tegrating over@21/2,1/2# yield

(
m

Ambmn8 50, n51,2,3, . . . ~31b!

with

bmn8 5S mm
11

q4Rr

mm
2 2

q4mm
1K

~mm
2!2 D dmn2S 22

Rr

mm
2 1

2q4K

~mm
2!2D

3q2^SnuD2Sm&1
q2mm

2 K

exp~q/2!~mm
2!2 S mm

112q4

14mmq3coth
mm

2 D ^Snusinh qz&

2F2Rr1
1

2
~21q!K Gq2dm^Snusinh qz&

1q3dmK^Snuz coshqz&. ~32b!

Equations~31a! and ~32a! govern the marginal state for th
onset of convection with an even parity forw andu, whereas
Eqs. ~31b! and ~32b! govern the state with an odd solutio
for w andu.
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V. RESULTS AND CONCLUSIONS

A nontrivial solution for the even case requires a vani
ing determinant of the coefficient matrix in Eq.~31a!, yield-
ing the generalized marginal condition relating the redu
Rayleigh numberRr5R2Rm , the Kelvin numberK, and
the dimensionless wave numberq. To obtain this condition
numerically, we truncate the infinite series in Eq.~31a! to a
finite numberN of terms. For given values ofN, q, andK,
we adjust Rr numerically until the determinant vanishe
This procedure yields the marginal state for the reduced R
leigh numberRr5Rr(q,K), which can be minimized with
respect toq to obtain the critical condition forRr for given
K.

For the classical, nonmagnetic case withK50 and Rm
50 this procedure yields the known marginal Rayleigh nu
berR5R0(q) in the absence of magnetic fields. Minimizin
R0(q) with respect toq for N55, 10, and 15 yields the
successive estimatesR0c51707.784, 1707.763, an
1707.762, withq0c53.116 in each case. These rapidly co
verge to the well-known critical values@8# R0c51707.762
andq0c53.117. Figure 1 showsR0(q) ~tracea in Fig. 1! for
the 15-term truncation, which is used henceforth. A sta
fluid layer in the absence of magnetic fields is stable to c
vective perturbations for Rayleigh numbersR,R0c , above
which gravitational buoyancy destabilizes a band of wa
numbers centered approximately onq0c .

For the onset of convection for the odd solution in t
absence of magnetic fields, a numerical calculation of E
~31b! and ~32b! for the 15-term truncation yields the corre
sponding critical valuesR0c517610.40 andq0c55.365,
consistent with their true values@8# R0c517610.39 andq0c
55.365. Comparing with the critical Rayleigh number (R0c
51707.762) for the onset of convection with an even so
tion, the large critical Rayleigh number for the odd soluti

FIG. 1. Convective stability diagram for a horizontal layer
paramagnetic fluid in the presence of a nonuniform magnetic fi
Shown are the marginal states for the reduced Rayleigh num
Rr(q)[R2Rm for the onset of convection forK50 ~tracea!, 1000
~traceb!, 2000 ~tracec!, 3000 ~traced!, 4000 ~tracee!, and 5000
~trace f ! as a function of the wave numberq.
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implies that only the even solution is permitted whenR
,17 610. Therefore, we limit our consideration to the m
ginal state governed by Eqs.~31a! and ~32a!.

Equations~31a! and ~32a! govern the generalized mar
ginal condition for the onset of convection of a horizon
layer of paramagnetic fluid in the presence of a nonunifo
magnetic field. The Kelvin numberK in these equations rep
resents the uniform vertical field effect on convection, a
Rm the effect due to the field gradient. Our numerical calc
lation yields these marginal conditions for the reduced R
leigh numberRr as a function of the wave numberq for
given Kelvin numbersK50, 1000, 2000, 3000, 4000, an
5000~see Fig. 1!. In the presence of a uniform vertical mag
netic field ~K.0 andRm50!, Fig. 1 shows that the critica
Rayleigh numberRc for the onset of convection is smalle
than the classical nonmagnetic critical Rayleigh num
R0c51707.762, indicating the enhancing effect of the fie
on convection. Figure 1 also shows that the larger the Ke
numberK, the smaller the critical Rayleigh numberRc , in-
dicating the stronger the enhancing effect of the field
convection. SinceK>0, uniform vertical magnetic fields al
ways promote convection, consistent with our previo
analysis@7# and in contrast to the result for electrically co
ducting fluids@8#. In the absence of gravity (R50), mag-
netic convection sets in whenK>K0c52568.476 for uni-
form vertical fields.

In the presence of a nonuniform magnetic field~K.0 and
RmÞ0!, Fig. 1 shows that the effect on convection due to
field gradient depends on the sign of the magnetic con
parameterRm . A negativeRm will promote convection, and
a positiveRm will inhibit convection. In this paper as well a
in the experiments@1,2#,

Rm5
m0xad3DT

raTanDT
S H

]H

]z D
x50

ext

.

For paramagnetic fluids, all of the material properties
positive, so the sign ofRm is determined by the signs ofDT
and (H]H/]z)0

ext. The four possible cases are summarized
Table I. In cases 1 and 2, the temperature differenceDT is
positive, indicating that the layer is heated from belo
Gravity induces a gravitational buoyancy force that tends
destabilize the layer. In the absence of magnetic fie
Rayleigh-Bénard convection sets in forR.R0c . In the pres-
ence of a nonuniform magnetic field, we see that an upw
Kelvin force inhibits convection~case 1!, whereas a down-

d.
er

TABLE I. Summary of results.

Case DT
SH ]H

]zD
0

ext

Kelvin
force Rm Result

1 1 1 ↑ 1 Rayleigh-Bénard convection
is inhibited

2 1 2 ↓ 2 Rayleigh-Bénard convection
is promoted

3 2 2 ↓ 1 no convection
4 2 1 ↑ 2 magnetothermal convection

is possible
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ward Kelvin force enhances convection~case 2!. In cases 3
and 4, the layer is heated from above, and gravity tend
stabilize the layer. Table I shows that a downward Kelv
force enhances this stability~case 3!, and there is no convec
tion. However, an upward Kelvin force induces a magne
buoyancy force that tends to destabilize the layer~case 4!.
Magnetothermal convection sets in when the reduced R
leigh numberRr.Rrc , which is determined by minimizing
the corresponding marginalRr(q,K) for given K with re-
spect to the wave numberq. The trends of cases 1, 2, and
are consistent with the experimental observations@1,2#.

For a given Kelvin numberK, minimizing the corre-
sponding marginal value of the reduced Rayleigh numberRr
with respect to the wave numberq yields the critical reduced
Rayleigh numberRrc and the critical wave numberqc . Fig-
ure 2 shows these critical numbersRrc andqc ~solid traces!
versus the Kelvin numberK, scaled respectively by the va
ues R0c51707.762, q0c53.116, andK0c52568.476. All
points below the trace ofRrc /R0c are stable to convection
whereas all points above this trace are unstable. The cri
reduced Rayleigh numberRrc for the onset of convection
decreases as the Kelvin numberK increases, indicating the
promoting effect of uniform vertical fields on convectio
However, the critical wave numberqc for the onset of con-
vection increases with increasing Kelvin numberK, indicat-
ing that uniform vertical magnetic fields tend to narrow t
pattern size of convection.

An approximate linear relation betweenRrc /R0c and
K/K0c follows from fits to the endpoints in Fig. 2;

FIG. 2. Convective threshold for the ratioRrc /R0c of the critical
reduced Rayleigh numberRrc from our simulations~dark trace! to
the classical nonmagnetic critical Rayleigh numberR0c51707.762
as a function of the ratioK/K0c of the Kelvin number to the critica
Kelvin numberK0c52568.476 for uniform vertical fields and n
gravity. Also shown is the threshold for the ratioqc /q0c of the
critical wave numberqc to the classical nonmagnetic critical wav
numberq0c53.116 as a function of the ratioK/K0c . Dashed traces
give approximate linear results from Eqs.~33! and ~34!.
to

c

y-

al

Rrc

R0c
1

K

K0c
51, ~33!

whereR0c51707.762 andK0c52568.476 as before. In th
presence of a nonuniform magnetic field, Eq.~33! yields the
critical reduced Rayleigh numberRrc for the onset of con-
vection. For 0,Rrc /R0c,1, this relation conservatively
givesK to within 1% over the entire parameter range~see the
dashed trace in Fig. 2 forRrc /R0c!. This relation reduces to
our previous result@7# and the result obtained by Finlayso
@10# for a uniform vertical field acting on a ferrofluid laye
Equation~33! provides a general condition for the field-fie
gradient product to balance the gravitational effect and he
to control convection in such fluids. Applying Eq.~33! to the
experiments@1,2# yields the required productuB]B/]zu
55.3 T2/m to offset the effect of gravity in these exper
ments @11#. This value agrees well with the experiment
measurements in cases~a! and ~c! as described in the Intro
duction. However, we note that the experiments used a
dolinium nitrate solution but our theory assumes a pure pa
magnetic fluid. Our analysis ignores Soret effects, which
cannot estimate due to lack of material properties. The ag
ment between the theory and experiments suggests that
effects are negligible.

An approximate linear relation betweenqc /q0c and
K/K0c also follows from fits to the end points in Fig. 2:

qc

q0c
5110.159

K

K0c
, ~34!

whereq0c53.116, the critical wave number in the absen
of magnetic fields. This relation gives the critical wave nu
ber qc for the onset of convection to within 0.3% of its tru
value for 0,K/K0c,1. Equation~34! shows that the critical
wave numberqc.q0c for K.0. Thus, the critical wave-
length lc52p/qc is smaller than the critical wavelengt
l0c52p/q0c in the absence of magnetic fields, indicatin
that uniform vertical fields tend to narrow the pattern size
convection. Equation~34! also shows that this effect is inde
pendent of the magnetic control parameterRm ; and there-
fore, it is independent of the field gradient.

In conclusion, our linear stability analysis of a horizont
paramagnetic fluid layer heated from below or above p
dicts that convection in this layer can be controlled by
nonuniform magnetic field. The gravitational buoyancy
such a fluid layer due to thermal expansion can be balan
by the Kelvin body force due to the external field gradie
Thus, nonuniform magnetic fields can be used to enhanc
to suppress the gravitational effect in terrestrial experime
and to control the flow of nonconducting paramagnetic flu
in microgravity environments. They can also be used to
crease the efficiency of heat-transfer devices. They m
also be used to control microstructures in crystal grow
from paramagnetic liquids.
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